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Flow of a yield — stress fluid between two infinite
coaxial cylinders rotating with angular velocities £, 2,

Yield stress fluid: behaves as a liquid, when the shear-
stress Is higher than the yield-stress ,, and as a “solid -

like” when the shear-stress Is less than t,,
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[ Viscosity tends to infinity at the yield surface ]




ﬁlor — Couette flow in a yield — stress f
between two infinite coaxial cylinders.

According to the Rayleigh criterion, when

N

unstable stratification of the angular
momentum :
4
d(er)z
<0,vr=|R{,R
. dr [ 1 2]

A

flow becomes unstable, which leads to the
appearance of Taylor vortices. Viscosity has
the role of dumping this effect, otherwise,

Same physical mechanism for
non-Newtonian purely viscous fluids

without

ViScosity vortices appear
Immediately.




K()bjective: \

Understand the flow structure and the behavior
of the Taylor vortices in a yield-stress fluid,
particularly in the case where we have a static
layer. Two situations are considered: wide and
narrow gaps.

< Methodology: =04 — 0.883
Linear and weakly nonlinear stability analysis W'de gap NarrOW gap
< Difficulty R,
Difficulty comes from the fact that at the yield " R,

surface the viscosity tends to infinity. It will be
explained during analysis.
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Constitutive equation
< Dimensional form
¥=0
< Dimensionless form
B;

- f]"y — T>B;

e
T < B,

Reference viscosity ‘ [lref = [ip

Shear stress

Yield stress
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Bingham
Plastic Liquid

Newtonian
Liquid

Shear rate



«* Purely azimuthal base flow:

d

dt

(r’t9) =0 [ Vp(Ry) =1 ] [ Vp(R3) = Re,/Rey ]

Ub = (O» Vb» O)

«* Different configurations:
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Wide gap (n = 0.4)
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T
Influence of Bingham number on velocity and viscosity profiles for wide gap and contra-

rotating case

| n=04 , Re; =-100 , Re;=1000 |
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It is important to see that with increasing of Bingham number, the region where we have flow is reduced,
but also the velocity gradient increases. In viscosity profile, near the yield surface, the viscosity tends to
infinity




Influence of Bingham number on velocity and viscosity profiles for wide gap and co-rotating

case

(pua)ir /il

[n =04, Re,=100 , Re;=1000]
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Rayleigh stability criterion for a perfect fluid:
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The increasing of the Bingham number brings the Rayleigh line closer to the solid
rotation line




[

{U» P, T} = {Ubt Pbt Tb} + {u'» p" T'}

J

«» Linearized perturbation equations:
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,, V-u' =0

u
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— + Rey[(u' - VYUp, +(Up - VU'| = —Vp' + V7’
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< Perturbation of the shear-stress :
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[Tlfi = [1;j(Up + u') — 7;;(Up)] = wpyi; (') + (e — up)A ]

< Tangent viscosity: [ U = [0t,9/0Vr0lp = 1 ]

Ai,j =0 lf l,] == 7’9,97'
Arg = Agr = Vro(u')

Shear stress ©

.
Lt

Bingham

Ht= Up

Ty = Shear Yield Stress
1 = Plastic Viscosity
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Shear strain rate v



«* Solution in the form of normal modes:

[ {u,vi,w',p'} = [u@), v(@),w(r),p(r)] exp[i(mb + kz)] exp|ot]

m € N: azimuthal wavenumber

k € R : axial wavenumber

o = o, + ig; — complex eigenvalue;

a; — principal of stability exchange and o,- — amplification of the perturbation

< Problem with generalized eigenvalues:

[ oMX = LX , X=@v' ]

where, £ and M — linear operators

The resolution of the eigenvalue problem is done using a spectral discretization based on the Chebyshev
collocation method and eigenvalue problem is solved directly using Mathlab



«» Annular space is fully sheared : region | W' =v'=0 at r=Ry,R,
‘ , Du'=0 at r =RyR
* No - slip velocity at the wall — :') :
— U =

u'=v'=0at r=R,

<+ Annular space is partially sheared : region Il ‘="' =0 at r=R.+h
u =v =uat r =Ry

« Compatibility conditions : At the linear order:
u'=Du'=v'=0 at r=R,

vijlUp+u)=0 , r=Ro+h Dv' +hD?V, =0 at r=R,

h : perturbation of the interface “liquid — solid”
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«» Eigenspectra for perturbations [ n= 0~4]
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" The peculiarity of Bingham effects is emphasized by the spectra of eigenvalues. For A

axisymmetric perturbations the eigenvalues are real or complex conjugate. WWe can
mention that with increasing Bingham number, separation between two eigenvalues
. becomes more important. Y




<+ Contours of the radial velocity [ n = 0_4}
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[ We can notice that with increasing the Bingham number vortices are squeezed towards the}
inner wall




Taylor vortices
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With increasing Bingham number marginal stability curves are flatten. The
marginal stability curve is a boundary between Taylor vortices and purely
. azimuthal flow.
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Wide gap (n = 0.4)
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Narrow gap (n = 0.883)
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* Low Re, variation with Re, for high Bingham values
 Stabilizing effect of Bingham's number in narrow gap

» Destabilizing effect of Bingham number in a wide gap
for co-rotational case: The increase of the wall velocity

gradient outweighs the viscous dissipation /




Wide gap (n = 0.4) Narrow gap (n = 0.883)
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For a high value of Bingham number, the critical mode remains

axisymmetric over a wide range of Re,. The size of the structures decreases

with the increase of Re,.
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Wide gap (n =0.4)
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Radial velocity decreases with increasing Bingham number for wide gap and squeezed

towards inner wall. The azimuthal velocity is squeezed to the inner wall.
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Narrow gap (n = 0.883)

0.07 T TT
1 1
1 1
| 09 r 1
0.06 : :
| 0.8 - |
! B=( 1
0.05 | 0.7 - |
1
| =1 i
L 1
~— 0.04 ! 0.8 !
3 1 1
e’ |
s | el B=5 |
N~ 0.03 1 :
| 0.4 r |
1
0.02 } 0.31
1 1
: 02\ :
0.01 | |
0.1 ;
1
0 | | | | | | | 1 0 | 1 | | | | | ||
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
/ R1 / S R1

The radial velocity deceases with increasing Bingham number for narrow gap and squeezed
towards inner wall. The azimuthal velocity is squeezed to the inner wall. But the effect is

less than for a wide gap.
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<+ Governing equations and boundary | @ )
conditions are compactly written as : { (lp)/"(v‘/’) + NG Y) + MG, }/’\) Y= V)}

~
Linear terms Nonlinear inertial | | Nonlinear viscous

terms terms
< Using Fourier series in the axial direction 4 N . A
and amplitude expansion method : Y(r,z2,t) = nZOO Yy (r, t) explinkz]
Yo @20 = D Ynamin @A 4127
e \ N . /
“+ Amplitude equation : Z o A Stuard —Landau equations
. ‘ <
< Perturbation of the h Z Z R msn |AIZmARE™
yield surface: n=1m=0
+ Z ho,2m|AI*™

\_ m=1 )




«» First order :
Linear problem (fundamental mode) { Y ~ Ay, explikz] + c.c. J

«* Second order :

« Second harmonic: Interaction of the fundamental mode with itself

[ Y ~ A% P, exp[2ikz] + c.c. J

* Modification of the base flow : Interaction of the fundamental mode with its complex conjugate

[ P ~ A2 oy + c.c. }




No — slip velocity

CwWR)=0, wWR+h)=0 |

«* First order :
{ Upjp =DUy; =V, =0 J
«» Second order : 4 Uy, = DUyy = 0 A
h%l 2
VZZ + hllDVII + TD VID; -— O
\ /
g UOZ —_ DUOZ —_ O A
" " Ih11I2 2 .
VOZ + h11DV11 + hllDVII + D V]p, — O

NG 2 /




According to the Bingham model : [ 71 (U + u.)| =0 r=Ry+h ]
«* First order : [ DVy; + hy{D?*V, =0 J
< p 4 A
* Second order : D2U,, + hy,D3U;; =0
1
Va2 + 5 h11 DVy; = 0

N /

%

1 1
{ DVZZ + 2 rhllell + hllD Vlll + hllD Vb + = (hll) (Davb - ;Dsz)

{DVOZ + hy D3V, + ho, D%V, + hy{ DV}, + hi,D?*V;; =0 }




The second order problem : [ n= 0.4]
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Modification of the base flow: asymmetry between the inner wall and outer wall.
Second harmonic: it is radiused and it is completely different from linear problem, where perturbation are
very small.
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«» Base flow
Different configurations of the base flow as a function of the Bingham number
«* Linear stability analysis
- The critical Rayleigh number increases with increasing Bingham number
- One situation where the critical Reynolds number decreases with increasing Bi
- The marginal stability curve flattens with increasing Bi

< Weakly nonlinear stability analysis
- Second harmonic is significant comparatively to the eigenfunction

- Focus on the boundary conditions and compatibility conditions

Future
Determination of the first Landau-constant: nature of the primary bifurcation




[ Thank you for your attention ]




