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Description of the problem

Flow of a yield – stress fluid between two infinite

coaxial cylinders rotating with angular velocities 𝛺1, 𝛺2

Yield stress fluid: behaves as a liquid, when the shear-

stress is higher than the yield-stress 𝜏𝑦 and as a “solid -

like” when the shear-stress is less than 𝜏𝑦
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𝑼 = 𝑼𝒃 + 𝒖′Viscosity tends to infinity at the yield surface



Taylor – Couette flow in a yield – stress fluid

between two infinite coaxial cylinders.

According to the Rayleigh criterion, when

unstable stratification of the angular

momentum :

𝑼 = 𝑼𝒃 + 𝒖′
𝒅 𝒓𝑽𝒃

𝟐

𝒅𝒓
< 𝟎 , ∀ 𝒓 = 𝑹𝟏, 𝑹𝟐

flow becomes unstable, which leads to the

appearance of Taylor vortices. Viscosity has

the role of dumping this effect, otherwise,

without viscosity vortices appear

immediately.𝑼 = 𝑼𝒃 + 𝒖′
Same physical mechanism for

non-Newtonian purely viscous fluids



𝑼
= 𝑼𝒃 + 𝒖′

𝜂 = 0.4

Wide gap 
𝜂 = 0.883

Narrow gap 

𝜂 =
𝑅1

𝑅2

❖ Objective:

Understand the flow structure and the behavior

of the Taylor vortices in a yield-stress fluid,

particularly in the case where we have a static

layer. Two situations are considered: wide and

narrow gaps.

❖ Methodology:

Linear and weakly nonlinear stability analysis

❖ Difficulty: 

Difficulty comes from the fact that at the yield

surface the viscosity tends to infinity. It will be

explained during analysis.



General equations

Characteristic scales:

❖Length : 

❖Velocity :

❖Reynolds number of 

inner cylinder:

❖Reynolds number of 

outer cylinder:
𝑅𝑒2 =

ෝ𝜌෡𝛺2 ෠𝑅2 ෠𝑑

ෝ𝜇𝑟𝑒𝑓

𝑅𝑒1 =
ෝ𝜌෡𝛺1 ෠𝑅1 ෠𝑑

ෝ𝜇𝑟𝑒𝑓

෠𝛺1 ෠𝑅1

መ𝑑 = ෠𝑅2 − ෠𝑅1



Bingham model

Constitutive equation

❖ Dimensional form

❖ Dimensionless form

Reference viscosity



Base flow

𝑼
= 𝑼𝒃 + 𝒖′B = 5

❖ Purely azimuthal base flow:

❖ Different configurations:

𝑼 = 𝑼𝒃 + 𝒖′𝑈𝑏 = (0, 𝑉𝑏 , 0)

𝑼 = 𝑼𝒃 + 𝒖′
𝑑

𝑑𝑡
𝑟2𝜏𝑟𝜃 = 0 𝑼 = 𝑼𝒃 + 𝒖′𝑉𝑏 𝑅1 = 1 𝑼 = 𝑼𝒃 + 𝒖′𝑉𝑏 𝑅2 = 𝑅𝑒2/𝑅𝑒1

Wide gap (𝜂 = 0.4) Narrow gap (𝜂 = 0.883)



𝑼 = 𝑼𝒃 + 𝒖′

Influence of Bingham number on velocity and viscosity profiles for wide gap and contra-

rotating case
𝑼 = 𝑼𝒃 + 𝒖′𝜂 = 0.4 , 𝑅𝑒2 = −100 , 𝑅𝑒1= 1000

It is important to see that with increasing of Bingham number, the region where we have flow is reduced,

but also the velocity gradient increases. In viscosity profile, near the yield surface, the viscosity tends to

infinity

Azimuthal velocity profiles Viscosity profiles



Influence of Bingham number on velocity and viscosity profiles for wide gap and co-rotating

case

𝑼 = 𝑼𝒃 + 𝒖′𝜂 = 0.4 , 𝑅𝑒2 = 100 , 𝑅𝑒1= 1000

Azimuthal velocity profiles Viscosity profiles



𝑼 = 𝑼𝒃 + 𝒖′

Rayleigh line

The increasing of the Bingham number brings the Rayleigh line closer to the solid

rotation line

Rayleigh stability criterion for a perfect fluid: 𝑼 = 𝑼𝒃 + 𝒖′
𝑑 𝑟𝑉𝑏

2

𝑑𝑟
< 0 ,∀ 𝑟 = 𝑅1, 𝑅2

Wide gap (𝜂 = 0.4) Narrow gap (𝜂 = 0.883)



𝑼 = 𝑼𝒃 + 𝒖′

Linear stability analysis

𝑼 = 𝑼𝒃 + 𝒖′𝑼, 𝑃, 𝜏 = 𝑼𝒃, 𝑃𝑏, 𝜏𝑏 + {𝒖′, 𝑝′, 𝜏′}

𝜕𝒖′

𝜕𝑡
+ 𝑅𝑒1 ൫𝒖

′ ∙ 𝛁)𝑼𝒃, +(𝑼𝒃 ∙ 𝛁)𝒖
′ = −𝛁𝑝′ + 𝛁𝜏′

❖ Linearized perturbation equations:

𝛁 ∙ 𝒖′ = 0

❖ Perturbation of the shear-stress :

𝜏𝑖𝑗
′ = [𝜏𝑖𝑗 𝑼𝒃 + 𝒖′ − 𝜏𝑖𝑗 𝑼𝒃 ] = 𝜇𝑏 ሶ𝛾𝑖𝑗 𝒖

′ + 𝜇𝑡 − 𝜇𝑏 𝐴

𝑅𝑦
𝑅0

h
𝑅1

𝑅2

𝜇𝑡 = 𝜕𝜏𝑟𝜃/𝜕 ሶ𝛾𝑟𝜃 𝑏 = 1❖ Tangent viscosity:

𝐴𝑖,𝑗 = 0 𝑖𝑓 𝑖, 𝑗 ≠ 𝑟𝜃, 𝜃𝑟

𝐴𝑟𝜃 = 𝐴𝜃𝑟 = ሶ𝛾𝑟𝜃 𝒖′

𝜇𝑡= 𝜇𝑝

𝜏𝑦

𝜏𝑦



Problem with eigenvalues

❖ Solution in the form of normal modes:

𝑼 = 𝑼𝒃 + 𝒖′𝑢′, 𝑣′, 𝑤′, 𝑝′ = 𝑢 𝑟 , 𝑣 𝑟 , 𝑤 𝑟 , 𝑝 𝑟 exp 𝑖 𝑚𝜃 + 𝑘𝑧 exp 𝜎𝑡

❖ Problem with generalized eigenvalues:

where, ℒ and M – linear operators

The resolution of the eigenvalue problem is done using a spectral discretization based on the Chebyshev

collocation method and eigenvalue problem is solved directly using Mathlab

𝑚 ∈ ℕ: azimuthal wavenumber

𝑘 ∈ ℝ ∶ axial wavenumber

𝜎 = 𝜎𝑟 + 𝑖𝜎𝑖 – complex eigenvalue; 

𝜎𝑖 – principal of stability exchange and 𝜎𝑟 – amplification of the perturbation 

𝑼 = 𝑼𝒃 + 𝒖′𝜎𝑀𝑋 = ℒ𝑋 , 𝑋 = 𝑢, 𝑣 𝑇



𝑼 = 𝑼𝒃 + 𝒖′

❖ Annular space is fully sheared : region I

• No – slip velocity at the wall
𝒖′ =

𝑢′ = 𝑣′ = 0 𝑎𝑡 𝑟 = 𝑅1, 𝑅2

• Compatibility conditions :

ሶ𝛾𝑖𝑗 𝑼𝒃 + 𝒖′ = 0 , 𝑟 = 𝑅0 + ℎ

𝒉 : perturbation of the interface “liquid – solid”

Boundary conditions 

𝐷𝑢′ = 0 𝑎𝑡 𝑟 = 𝑅1, 𝑅2

❖ Annular space is partially sheared : region II 𝛁 ∙ 𝜏
𝑢′ = 𝑣′ = 0 𝑎𝑡 𝑟 = 𝑅1

𝑢′ = 𝑣′ = 0 𝑎𝑡 𝑟 = 𝑅0 + ℎ

𝜵 ∙ 𝝉

At the linear order:

𝐷𝑣′ + ℎ𝐷2𝑉𝑏 = 0 𝑎𝑡 𝑟 = 𝑅𝑜

𝛻 ∙ 𝑢′ = 0

𝑢′ = 𝐷𝑢′ = 𝑣′ = 0 𝑎𝑡 𝑟 = 𝑅𝑜



The peculiarity of Bingham effects is emphasized by the spectra of eigenvalues. For

axisymmetric perturbations the eigenvalues are real or complex conjugate. We can

mention that with increasing Bingham number, separation between two eigenvalues

becomes more important.

❖ Eigenspectra for perturbations

B = 5B = 0

𝑼
= 𝑼𝒃 + 𝒖′𝜂 = 0.4



❖ Contours of the radial velocity 

We can notice that with increasing the Bingham number vortices are squeezed towards the

inner wall

𝑼
= 𝑼𝒃 + 𝒖′𝜂 = 0.4

B = 5B = 0



Marginal stability curves

Wide gap (𝜂 = 0.4) Narrow gap (𝜂 = 0.883)

Taylor vortices Taylor vortices

Purely azimuthal flow Purely azimuthal flow

With increasing Bingham number marginal stability curves are flatten. The

marginal stability curve is a boundary between Taylor vortices and purely

azimuthal flow.



Critical conditions

Wide gap (𝜂 = 0.4) Narrow gap (𝜂 = 0.883)

• Low 𝑅𝑒1 variation with 𝑅𝑒2 for high Bingham values

• Stabilizing effect of Bingham's number in narrow gap

• Destabilizing effect of Bingham number in a wide gap

for co-rotational case: The increase of the wall velocity

gradient outweighs the viscous dissipation



Critical conditions

Wide gap (𝜂 = 0.4) Narrow gap (𝜂 = 0.883)

For a high value of Bingham number, the critical mode remains

axisymmetric over a wide range of 𝑅𝑒2. The size of the structures decreases

with the increase of 𝑅𝑒2.



Eigenfunctions

Wide gap (𝜂 = 0.4)

Radial velocity decreases with increasing Bingham number for wide gap and squeezed

towards inner wall. The azimuthal velocity is squeezed to the inner wall.



Narrow gap (𝜂 = 0.883)

The radial velocity deceases with increasing Bingham number for narrow gap and squeezed

towards inner wall. The azimuthal velocity is squeezed to the inner wall. But the effect is

less than for a wide gap.

Eigenfunctions



Weakly nonlinear analysis

𝜕

𝜕𝑡
𝑀 𝜓 = 𝐿 𝜓 + 𝑁I 𝜓,𝜓 + 𝑁I 𝜓,𝜓, 𝜓,… , 𝜓 = 𝑢, 𝑣

❖ Governing equations and boundary 

conditions are compactly written as :

Linear terms Nonlinear inertial

terms

Nonlinear viscous

terms

❖ Using  Fourier series in the axial direction 

and amplitude expansion method : 
𝜓 𝑟, 𝑧, 𝑡 = ෍

𝑛=−∞

+∞

𝜓𝑛 𝑟, 𝑡 exp 𝑖𝑛𝑘𝑧

𝜓𝑛 𝑟, 𝑡 = ෍

𝑚=0

𝑁

𝜓𝑛,2𝑚+𝑛 𝑟 𝐴𝑛 𝐴 2𝑚

❖ Amplitude equation : 𝜕𝐴

𝜕𝑡
= ෍

𝑚=0

+∞

𝑔𝑚 𝐴 2𝑚

❖ Perturbation of the 

yield surface:
ℎ = ෍

𝑛=1

෍

𝑚=0

ℎ𝑛,2𝑚+𝑛 𝐴 2𝑚𝐴𝑛𝐸𝑛

+ ෍

𝑚=1

ℎ0,2𝑚 𝐴 2𝑚

Stuard –Landau equations



❖ First order :

❖ Second order :

• Second harmonic: Interaction of the fundamental mode with itself

• Modification of the base flow : Interaction of the fundamental mode with its complex conjugate

Linear problem (fundamental mode) 𝜓 ~ 𝐴 𝜓11 exp 𝑖𝑘𝑧 + 𝑐. 𝑐.

𝜓 ~ 𝐴2 𝜓22 exp 2𝑖𝑘𝑧 + 𝑐. 𝑐.

𝜓 ~ 𝐴 2 𝜓02 + 𝑐. 𝑐.



Boundary conditions

No – slip velocity 
𝒖′ 𝑅1 = 0 , 𝒖′ 𝑅0 + ℎ = 0

❖ First order :

❖ Second order :

𝑈11 = 𝐷𝑈11 = 𝑉11 = 0

𝑈22 = 𝐷𝑈22 = 0

𝑉22 + ℎ11𝐷𝑉11 +
ℎ11
2

2
𝐷2𝑉𝑏 = 0

𝑈02 = 𝐷𝑈02 = 0

𝑉02 + ℎ11𝐷𝑉11
∗ + ℎ11

∗ 𝐷𝑉11 +
ℎ11

2

2
𝐷2𝑉𝑏 = 0



Compatibility conditions

𝑼 = 𝑼𝒃 + 𝒖′ቚሶ𝛾𝑖𝑗 𝑼𝒃 + 𝒖′
𝑟
= 0 , 𝑟 = 𝑅0 + ℎAccording to the Bingham model :

❖ First order :

❖ Second order :

𝐷𝑉11 + ℎ11𝐷
2𝑉𝑏 = 0

𝑉22 +
1

2
ℎ11𝐷𝑉11 = 0

𝐷𝑉02 + ℎ11𝐷
3𝑉𝑏 + ℎ02𝐷

2𝑉𝑏 + ℎ11𝐷
2𝑉11

∗ + ℎ11
∗ 𝐷2𝑉11 = 0

𝐷2𝑈22 + ℎ11𝐷
3𝑈11 = 0

𝐷𝑉22 +
1

2 𝑟
ℎ11𝐷𝑉11 + ℎ11𝐷

2𝑉11 + ℎ11𝐷
2𝑉𝑏 +

1

2
ℎ11

2 𝐷3𝑉𝑏 −
1

𝑟
𝐷2𝑉𝑏 = 0



The second order problem :
𝑼
= 𝑼𝒃 + 𝒖′𝜂 = 0.4

Modification of the base flow: asymmetry between the inner wall and outer wall. 

Second harmonic: it is radiused and it is completely different from linear problem, where perturbation are 

very small.



𝑼 = 𝑼𝒃 + 𝒖′

Conclusion

Different configurations of the base flow as a function of the Bingham number

- The critical Rayleigh number increases with increasing Bingham number

- One situation where the critical Reynolds number decreases with increasing Bi

- The marginal stability curve flattens with increasing Bi

- Focus on the boundary conditions and compatibility conditions

- Second harmonic is significant comparatively to the eigenfunction 

Future

Determination of the first Landau-constant: nature of the primary bifurcation

❖ Base flow

❖ Linear stability analysis

❖Weakly nonlinear stability analysis



𝑼 = 𝑼𝒃 + 𝒖′Thank you for your attention


